
Laboratorio di
Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Code testing:
techniques and tools
“Testing can show the presence of errors,

but not their absence.” 
- Edsger Dijkstra

What is software verification ?
• Software verification is a discipline of software

engineering whose goal is to assure that software fully
satisfies all the expected requirements.

• There are two fundamental approaches to verification:

• Dynamic verification, also known as Test or
Experimentation

• This is good for finding bugs

• Static verification, also known as Analysis

• This is useful for proving correctness of a program
although it may result in false positives

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Experimentation
http://en.wikipedia.org/wiki/Static_code_analysis

Static verification

• Static verification is the process of checking
that software meets requirements by doing a
physical inspection of it. For example:

• Code conventions verification

• Bad practices (anti-pattern) detection

• Software metrics calculation

• Formal verification 

http://en.wikipedia.org/wiki/Code_conventions
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Formal_verification

Dynamic verification

• Dynamic verification is performed during the execution of
software, and dynamically checks its behaviour; it is
commonly known as the Test phase. Verification is a
Review Process. Depending on the scope of tests, we can
categorize them in three families:

• Test in the small: a test that checks a single function or
class (Unit test)

• Test in the large: a test that checks a group of classes

• Acceptance test: a formal test defined to check
acceptance criteria for a software

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Unit_test

Static and Dynamic

• Static and Dynamic analysis are
complementary in nature

• Static unit testing is not an alternative to
dynamic unit testing, or vice versa.

• It is recommended that static unit testing be
performed prior to the dynamic unit testing

Static program analysis

• Static program analysis is the analysis of
computer software that is performed
without actually executing programs

• The term is usually applied to the analysis
performed by an automated tool

• code review is a human analysis procedure
in which different programmers read the
code and give recommendations on how
to improve it.

http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/Code_review

Static program analysis - cont.

• It is possible to prove that (for any Turing
complete language, like C and C++), finding
all possible run-time errors in an arbitrary
program (or more generally any kind of
violation of a specification on the final result
of a program) is undecidable...

• ...but one can still attempt to give useful
approximate solutions

http://en.wikipedia.org/wiki/Turing_complete
http://en.wikipedia.org/wiki/Decision_problem

Static program analysis - cont.

• Many IDEs (e.g. CLion,
Eclipse, XCode) have a
static analysis component
and show results in the
editor.

• Other tools are available
as plugins or standalone
tools (e.g. cppcheck)

Static program analysis - cont.

• Many IDEs (e.g. CLion,
Eclipse, XCode) have a
static analysis component
and show results in the
editor.

• Other tools are available
as plugins or standalone
tools (e.g. cppcheck)

Static program analysis - cont.

• Many IDEs (e.g. CLion,
Eclipse, XCode) have a
static analysis component
and show results in the
editor.

• Other tools are available
as plugins or standalone
tools (e.g. cppcheck)

Static program analysis - cont.

• Many IDEs (e.g. CLion,
Eclipse, XCode) have a
static analysis component
and show results in the
editor.

• Other tools are available
as plugins or standalone
tools (e.g. cppcheck)

Why using static analysis tools ?

• McConnell has reported in “Code Complete”
that the cost of fixing an error at testing stage
is 10x that of code writing stage:

Why using static analysis tools ?

• Static analysis tools allow you to quickly detect a
lot of errors of the coding stage

• Static analyzers check even those code fragments
that get controlled very rarely.

• Static analysis doesn't depend on the compiler
you are using and the environment where the
compiled program will be executed. It allows you
to find hidden errors that can reveal themselves
only a few years later.

• You can easily and quickly detect misprints and
consequences of Copy-Paste usage.

http://www.viva64.com/en/a/0068/

Static code analysis' disadvantages
• Static analysis is usually poor regarding

diagnosing memory leaks and concurrency
errors. To detect such errors you actually need
to execute a part of the program virtually.

• There are specific tools for this, like Valgrind,
AddressSanitizer and MemorySanitizer

• A static analysis tool warns you about odd
fragments that can actually be quite correct.
Only the programmer can understand if the
analyzer points to a real error or it is just a
false positive.

Unit testing
“A QA Engineer walks into a bar. Orders a beer.

Orders 0 beers. Orders 999999 beers. Orders a lizard.
Orders -1 beers. Orders a....” 

- Amos Shapira, Senior System Engineer at
Wargaming.net

Unit testing
• Unit testing is a method by which individual

units of source code are tested to determine if
they are fit for use.

• It is NOT an academic distraction of
exercising all inputs... it’s a common practice
in agile methods

• It is becoming a substantial part of software
development practice, with many
frameworks and tools to help its
implementation  

Unit testing - cont.

• The idea about unit tests is to write test
cases (i.e. code) for all functions and methods
so that whenever a change causes a problem,
it can be identified and fixed quickly.

• Ideally each test is separate from the
others.

• To ease the task of writing the testing code
you can use several frameworks like CppUnit,
CxxTest, GoogleTest, Boost::Test, etc.

Unit testing - cont.

• Programmers create test inputs using intuition and
experience, following the specifications

• Programmers determine proper output for each input
using informal reasoning or experimentation

• A test run shows results like passed vs. failed tests,
either onscreen or as a stream (in XML, for example).
This latter format can be leveraged by an automated
process to reject a code change.

• Ideally, unit tests should be incorporated into a makefile
or a build process so they are ran when the program is
compiled.

Unit testing - cont.

• The environment of a unit is emulated and tested in isolation

• The caller unit is known as test driver

• A test driver is a program that invokes the unit under test

• It provides input data to unit under test and report the test result

• The emulation of the units called by the UUT are called stubs

• It is a dummy program

• The test driver and the stubs are together called scaffolding

Unit test: terms

• A test suite groups test cases around a similar
concept. Each test case attempts to confirm
domain rule assertions.

• There are situations where a group of test cases
need a similar environment setup before
running. A test fixture, enables a setup
definition to be executed before each of its test
cases. The fixture can include a teardown
function to clean up the environment once a
test case finishes, regardless of its results.

Unit test: example

class Calculator { 

 public:
 Calculator();
 Calculator(int v);

 int sum(int x);
 int subtract(int x);
 int mul(int x);

 int getValue() const {
 return value;
 }

 void setValue(int 
 value){
 this->value = value;
 }

private:
 int value;
};

Unit test: CxxTest example
#include <cxxtest/TestSuite.h>

#include "Calculator.h"

class TestCalculator : public
CxxTest::TestSuite {
public:
 void setUp() {
 // TODO: Implement setUp() function.
 }

 void test_global_Calculator_Calculator() {
 Calculator c;
 TS_ASSERT_EQUALS(c.getValue(), 0);
 }

 void
test_global_Calculator_Calculator_int() {
 Calculator c(3);
 TS_ASSERT_EQUALS(c.getValue(), 3);
 }

 void testSum() {
 Calculator c(4);
 c.sum(3);
 TS_ASSERT_EQUALS(c.getValue(), 7);
 }

 void testSubtract()
 {
 Calculator c(5);
 c.subtract(3);
 TS_ASSERT_EQUALS(c.getValue(), 2);
 }

 void testMul()
 {
 Calculator c(7);
 c.mul(2);
 TS_ASSERT_EQUALS(c.getValue(), 14);
 }

};

Unit test: CxxTest example

• Let’s suppose that the implementation of the
constructor is wrong, here’s the output of the
tests:

Running 5 tests
In TestCalculator::test_global_Calculator_Calculator:
<<reference tests>>:19: Error: Expected (c.getValue() == 0), found
(1 != 0)
....
Failed 1 of 5 tests
Success rate: 80%
No memory leaks detected.

Memory usage statistics:

Total memory allocated during execution: 55 bytes
Maximum memory in use during execution: 55 bytes
Number of calls to new: 2
Number of calls to delete (non-null): 2
Number of calls to new[]: 0
Number of calls to delete[] (non-null): 0
Number of calls to delete/delete[] (null): 0
Result: 1

Unit test: CxxTest example

• Let’s suppose that the implementation of the
constructor is wrong, here’s the output of the
tests:

Running 5 tests
In TestCalculator::test_global_Calculator_Calculator:
<<reference tests>>:19: Error: Expected (c.getValue() == 0), found
(1 != 0)
....
Failed 1 of 5 tests
Success rate: 80%
No memory leaks detected.

Memory usage statistics:

Total memory allocated during execution: 55 bytes
Maximum memory in use during execution: 55 bytes
Number of calls to new: 2
Number of calls to delete (non-null): 2
Number of calls to new[]: 0
Number of calls to delete[] (non-null): 0
Number of calls to delete/delete[] (null): 0
Result: 1

TDD

• In test-driven development (TDD), programmers first write the
test code, then the actual source code, which should pass the
test.

• This is the opposite of conventional development, in which
writing the source code comes first, followed by writing unit
tests, but...

• ...a recent study at Microsoft has shown that:

• TDD teams produced code that was 60 to 90 percent
better in terms of defect density than non-TDD teams.

• TDD teams took longer to complete their projects—15 to
35 percent longer.

Debugging

• The process of determining the cause of a failure is
known as debugging

• It is a time consuming and error-prone process

• Debugging involves a combination of systematic
evaluation, intuition and a little bit of luck

• The purpose is to isolate and determine its specific
cause, given a symptom of a problem

• CLion integrates a debugger. Other IDEs like Eclipse
use an external debugger (lldb or gdb): install it.

Testing with  
Google C++ Test

Using Google Test

• We start writing assertions, i.e. statements
that check whether a condition is true, about
our code.

• An assertion's result can be success, nonfatal
failure, or fatal failure. If a fatal failure occurs,
it aborts the current function; otherwise the
program continues normally.

Code organization

• Tests use assertions to verify the tested code's
behavior. If a test crashes or has a failed assertion,
then it fails; otherwise it succeeds.

• A test case contains one or many tests. You should
group your tests into test cases that reflect the
structure of the tested code. When multiple tests in a
test case need to share common objects and
subroutines, you can put them into a test fixture
class.

• A test program can contain multiple test cases.

Assertions
• Google Test assertions are macros that resemble function

calls. You test a class or function by making assertions
about its behavior. When an assertion fails, Google Test
prints the assertion's source file and line number location,
along with a failure message. You may also supply a
custom failure message which will be appended to
Google Test's message.

• There are several types of assertions:

• ASSERT_* versions generate fatal failures when they
fail, and abort the current function.

• EXPECT_* versions generate nonfatal failures, which
don't abort the current function.

Assertions example

ASSERT_EQ(x.size(), y.size()) <<  
 "Vectors x and y have different length";

for (int i = 0; i < x.size(); ++i) {

 EXPECT_EQ(x[i], y[i]) <<  
 "Vectors x and y differ at index "  
 << i;

}

Simple Test

• To create a test:

1. Use the TEST() macro to define and name a test function. It is
an ordinary C++ functions that doesn't return a value.

2. In this function, along with any valid C++ statements you want
to include, use the various Google Test assertions to check
values.

3. The test's result is determined by the assertions; if any assertion
in the test fails (either fatally or non-fatally), or if the test
crashes, the entire test fails. Otherwise, it succeeds.

• TEST(testCaseName, testName) {  
 ... test body ...  
}

Simple Test

• To create a test:

1. Use the TEST() macro to define and name a test function. It is
an ordinary C++ functions that doesn't return a value.

2. In this function, along with any valid C++ statements you want
to include, use the various Google Test assertions to check
values.

3. The test's result is determined by the assertions; if any assertion
in the test fails (either fatally or non-fatally), or if the test
crashes, the entire test fails. Otherwise, it succeeds.

• TEST(testCaseName, testName) {  
 ... test body ...  
}

int Factorial(int n); // Returns the factorial of n  
 
// Tests factorial of 0.
TEST(FactorialTest, HandlesZeroInput) {
 EXPECT_EQ(1, Factorial(0));
}

// Tests factorial of positive numbers.
TEST(FactorialTest, HandlesPositiveInput) {
 EXPECT_EQ(1, Factorial(1));
 EXPECT_EQ(2, Factorial(2));
 EXPECT_EQ(6, Factorial(3));
 EXPECT_EQ(40320, Factorial(8));
}

Test Fixture

• To perform tests operating on the same or similar data use text
fixture. To create a fixture:

1. Derive a class from ::testing::Test . Start its body with
protected: or public: as we'll want to access fixture members from
sub-classes.

2. Inside the class, declare any objects you plan to use.

3. If necessary, write a default constructor or SetUp() function to
prepare the objects for each test.

4. If necessary, write a destructor or TearDown() function to
release any resources you allocated in SetUp() .

5. If needed, define subroutines for your tests to share.

template <typename E> // E is the element type.
class Queue {
 public:
 Queue();
 void Enqueue(const E& element);
 E* Dequeue(); // Returns NULL if the queue is empty.
 size_t size() const;
 ...
};  
 

class QueueTest : public ::testing::Test {
 protected:
 virtual void SetUp() {
 q1_.Enqueue(1);
 q2_.Enqueue(2);
 q2_.Enqueue(3);
 }

 // virtual void TearDown() {}

 Queue<int> q0_;
 Queue<int> q1_;
 Queue<int> q2_;
};

Test Fixture

• To perform tests operating on the same or similar data use text
fixture. To create a fixture:

1. Derive a class from ::testing::Test . Start its body with
protected: or public: as we'll want to access fixture members from
sub-classes.

2. Inside the class, declare any objects you plan to use.

3. If necessary, write a default constructor or SetUp() function to
prepare the objects for each test.

4. If necessary, write a destructor or TearDown() function to
release any resources you allocated in SetUp() .

5. If needed, define subroutines for your tests to share.

When using a fixture, use TEST_F() instead of
TEST() as it allows you to access objects and
subroutines in the test fixture:

TEST_F(testCaseName, testName) {
 ... test body ...
}

The first argument is the name of the test fixture

template <typename E> // E is the element type.
class Queue {
 public:
 Queue();
 void Enqueue(const E& element);
 E* Dequeue(); // Returns NULL if the queue is empty.
 size_t size() const;
 ...
};  
 

class QueueTest : public ::testing::Test {
 protected:
 virtual void SetUp() {
 q1_.Enqueue(1);
 q2_.Enqueue(2);
 q2_.Enqueue(3);
 }

 // virtual void TearDown() {}

 Queue<int> q0_;
 Queue<int> q1_;
 Queue<int> q2_;
};

Running tests

• After defining your tests, you can run them
with RUN_ALL_TESTS(), which returns 0 if
all the tests are successful, or 1 otherwise.  
Note that RUN_ALL_TESTS() runs all tests
in your link unit — they can be from different
test cases, or even different source files.

• Call RUN_ALL_TESTS() only once.

CLion and Google Test

CLion and Unit Testing

• CLion provides some facilities for unit testing

• Currently supports only Google Test
framework

• Run tests from IDE

• Helps in generating tests

Organizing source code

• Write tests in a directory that is different
from that of the project, e.g. in a test/ sub-
directory

• It is suggested to install Google Test there…

• …but you can use also a pre-installed
version

CMake instructions

• Edit the CMake file of the project to add the
directory of tests and search.

• Compile the project as library so it’s easier to
add it to the test sub-project  
 
add_subdirectory(test)  
 
set(SOURCE_FILES source1.cpp source1.h)  
add_executable(my_executable main.cpp)  
add_library(core ${SOURCE_FILES})  
target_link_libraries(my_executable core)

CMake instructions

• Add a CMakeLists.txt file to tell how to compile
the test code in the test/ directory

• Add CMake instructions to search for GTest:  
 
find_package(GTest REQUIRED)  
include_directories(${GTEST_INCLUDE_DIRS})  
 
set(SOURCE_FILES runAllTests.cpp Test1.cpp Fixture1.cpp)  
add_executable(runAllTests ${SOURCE_FILES})  
target_link_libraries(runAllTests ${GTEST_BOTH_LIBRARIES}  
 core)

CMake instructions

• Add a CMakeLists.txt file to tell how to compile
the test code in the test/ directory

• Add CMake instructions to search for GTest:  
 
find_package(GTest REQUIRED)  
include_directories(${GTEST_INCLUDE_DIRS})  
 
set(SOURCE_FILES runAllTests.cpp Test1.cpp Fixture1.cpp)  
add_executable(runAllTests ${SOURCE_FILES})  
target_link_libraries(runAllTests ${GTEST_BOTH_LIBRARIES}  
 core)

Name of the library set in previous step

Write test file

• Start writing tests, e.g. using the Generate
function

Write fixture file

• Start writing fixtures, e.g. using the Generate
function.  
Add SetUp and TearDown when needed.

Write fixture tests

• Add Tests to Fixtures. Once the name of the
suite matches that of the fixture CLion
updates TEST() to TEST_F()

Create Test run configuration

Run test configuration

• CLion shows graphically the outcome of tests

Adding a local  
Google Test

Installing Google Test
• Download Google C++ Test from  

https://github.com/google/googletest

• Copy the decompressed  
directories and files in a  
test/lib/ folder

https://github.com/google/googletest

CMake file

• Add the Google Test directory to compile the
library. Link against the test code with the
library files 
 
add_subdirectory(./lib/googletest)  
set(gtest_SOURCE_DIR, ./lib/googletest/)  
include_directories(${gtest_SOURCE_DIR}/include  
 ${gtest_SOURCE_DIR})  
 
set(SOURCE_TEST_FILES runAllTests.cpp Test1.cpp Fixture1.cpp)  
add_executable(runAllTests ${SOURCE_TEST_FILES})  
target_link_libraries(runAllTests gtest gtest_main core)

Overview

